The Monte-Carlo Parametric Expectation Maximization Algorithm

Serge Guzy, PhD

President POP-PHARM; Inc Department of Pharmacokinetics, XOMA

MC-PEM METHODOLOGY (Prior Sampling)

Sample from the prior
 distribution and evaluate the
 weighted individual
 likelihood at each sample k

$$z_{(k)i} = \frac{l(y_i, \theta_{(k)i})}{\sum_{k=1}^{r_i} l(y_i, \theta_{(k)i})}$$

$$\overline{\theta}_{Gi} = \sum_{k=1}^{r_i} z_{(k)i} \theta_{(k)i}$$

Compute the individual variance covariance matrix

$$\overline{B}_{Gi} = \sum_{k=1}^{r_i} z_{(k)i} (\theta_{(k)i} - \overline{\theta}_{Gi}) (\theta_{(k)i} - \overline{\theta}_{Gi})'$$

CG0820 2

MC-PEM METHODOLOGY (Direct Sampling)

Update the prior

Update the Population means

$$\mu_{new} = \frac{1}{m} \sum_{i=1}^{m} \overline{\theta}_{Gi}$$

Update the Population Variances and Covariances

$$\Omega_{new} = \frac{1}{m} \sum_{i=1}^{m} \left(\overline{\theta}_{Gi} - \mu_{new} \right) \left(\overline{\theta}_{Gi} - \mu_{new} \right)^{'} + \frac{1}{m} \sum_{i=1}^{m} \overline{B}_{Gi}$$

MC-PEM METHODOLOGY (Prior Sampling)

 Repeat all the previous steps with the new population means, variances, covariances and σ (new prior) until no change is reported in the prior

 The objective function will be optimal once no change is detected in each of the estimated parameters

Typical Individual Profile without inter-occasion variability

Typical Individual Profile with inter-occasion variability

Observed individual profile: Two Equal Doses and Inter-occasion variability

Observed data compared to Predicted Concentration (with and without inter-occasion)

The Algorithm

- **1.** Start with first individual, i
- 2. Sample one set of parameters (k=1) from the prior distribution (One value of V and CL)
- **3.** Sample one set of parameters for each occasion with mean V,CL and initial variance-covariance matrix you selected for Inter-occasion variability, Ω_{IOV}
- **4.** Compute the normalized likelihood $(z_{k(i)})$
- 5. k=k+1 and repeat steps 2-4 until the last sample (k=r_i)
- 6. i=i+1 and repeat Steps 1-5 until the last individual (i=n)
- 7. Update Population Mean, Between Subject and Inter-Occasion variability as follows

Update of the Between subject Population

$$\mu_{new} = \frac{1}{m} \sum_{i=1}^{m} \overline{\theta}_{Gi}$$
$$\Omega_{new} = \frac{1}{m} \sum_{i=1}^{m} (\overline{\theta}_{Gi} - \mu_{new}) (\overline{\theta}_{Gi} - \mu_{new})' + \frac{1}{m} \sum_{i=1}^{m} \overline{B}_{Gi}$$

Update of the Inter-occasion variability

$$\Omega_{IOV} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{r_i} z_{(k)_i} \sum_{j=1}^{noccasion} (\theta_{(k)_i} - \theta_{(k)_{i,j}}) (\theta_{(k)_i} - \theta_{(k)_{i,j}})'$$

where:

- $\theta_{(k)}$: kth simulated vector from the prior distribution
- $\theta_{(k)_{i}}$: simulated vector at the jth occasion with mean $\theta_{(k)_{i}}$ and variance-covariance matrix Ω_{IOV}
- *n*: number of individuals
- r_i : number of random vectors for individual i

Example 1

1 compartment model

- IV Bolus
- V and CL are the population parameters
- Inter-occasion on CL

Example 1: data set

💌 M	icrosoft	Excel																	_ 7	X
Eile	<u>E</u> dit	View Inser	t F <u>o</u> rmat <u>T</u>	ools <u>D</u> ata	Window H	<u>H</u> elp												Type a que	stion for help	-
in.	pa 📮		ABC 61	X 🗅 🙈 -	- 🎯 🗐 🖵	CH + 1 😣	Σ - A ↓ 4	X 🛍 🦨	å 100% -	🕜 📄 i Ar	al		- B	<i>I</i> U ≡	≡ ≡ ••	\$ %	• €.0 .00	÷	. A - A -	
· -	<u> </u>				× 1 /	· .	- 21	AT 1 000 14			-		~			1 + 10	.00 9.0		<u> </u>	_
									× 1	T M -		∃ <u> </u> ₩	2 ¹							
	A1	•	†x C																	
1	d1tr2b	_set_1_10	_patients_m	ufpada.csv	/															
	A	В	С	D	E	F	G	Н		J	K	L	M	N	0	Р	Q	R	S T	☴
1	С	Data De	sc:model1pk	CL_INTER-	OCCASION	l														
2	С	ĪD	TIME	DV	AMT	RATE	EVD	TYPE	CMP	occasion										
3			1 0.00E+00	0.00E+00	1.00E+02	0.00E+00	1		1 1	1 1										
4			1 1.00E-01	1 1.80E+00	0.00E+00	0.00E+00	0		1 1	1 1										
5			1 5.00E-01	1 1.37E+00	0.00E+00	0.00E+00	0		1 1	1 1										
6			1 1.00E+00	0 1.01E+00	0.00E+00	0.00E+00	0		1 1	1 1										
7			1 2.00E+00	0 5.31E-01	0.00E+00	0.00E+00	0		1 1	1 1										
8			1 4.50E+00) 1.39E-01	0.00E+00	0.00E+00	0		1 1	1										
9			1 5.00E+00	0.00E+00	1.00E+02	0.00E+00	1													
10			1 5.10E+00	J 1.85E+00	0.00E+00	0.00E+00	0		1 1											
11			1 5.50E+00	J 1.31E+00	0.00E+00	0.00E+00	0		1											
12			1 5.00E+00	J 7.68E-01	0.00E+00	0.00E+00	0		1 1											
13			1 7.00E+00	J J.12E-01	0.00E+00	0.00E+00	0		1											
14			1 9.50E+00	J 4.37E-02	1.00E+00	0.00E+00	1		1 .											
10			1 1.00E+0	1 0.00E+00	1.00E+02	0.00E+00	1		1 4											
17			1 1.012+0	1 1.020+00	0.000000	0.000000	0		1 4	1 3										
18			1 1.00E+0	1 1.45E±00	0.0000+00	0.000+00	0		1 .	1 3										
10			1 1 20E±01	1 6.05E-01	0.00E+00	0.00E+00	0		1 1											-
20			1 1.20E10	1 1 27E-01	0.00E+00	0.00E+00	0		1 1											
21			2 0.00E+00	0.00E+00	1.00E+02	0.00E+00	1		1 1	1 1	'									
22			2 1 00E-01	1 2 79E+00	0.00E+00	0.00E+00	0		1 1	1 1										
23			2 5.00E-01	1 1 80E+00	0.00E+00	0.00E+00	0		1 ·	1 -										
24			2 1 00E+00) 1 22E+00	0.00E+00	0.00E+00	0		1 1	1										
25			2 2.00E+00	0 5.80E-01	0.00E+00	0.00E+00	0		1 1	1 1										
26			2 4.50E+00	0 6.62E-02	0.00E+00	0.00E+00	0		1 1	1 1										
27			2 5.00E+00	0.00E+00	1.00E+02	0.00E+00	1		1 1	1 2	2									
28			2 5.10E+00	2.77E+00	0.00E+00	0.00E+00	0		1 1	1 2	2									
29			2 5.50E+00	0 1.83E+00	0.00E+00	0.00E+00	0		1 1	1 2	2									
30			2 6.00E+00	0 1.12E+00	0.00E+00	0.00E+00	0		1 1	1 2										
31			2 7.00E+00	0 4.19E-01	0.00E+00	0.00E+00	0		1 1	1 2	2									
32			2 9.50E+00	2.95E-02	0.00E+00	0.00E+00	0		1 1	1 2										~
H I	► ► ► [\	ad1tr2b_s	et_1_10_pa	tients_mu	fpa/							<							>	.ei

PD PDx-MC	C-PEM Control File Wizard	1.0 [15NOV2005]				
Contro Model	ol File Name: interoccasion I Description: #100000 one	ecpag comp, CL/V, IV bolus		Current Screen: Basic Options		
PK Dat No. EM	ta File Name: ad1tr2b_set_1. A Iterations:	_10_patients_mufpada.csv		Select Data File		
Model	l Input:					
Cor	npartment Options:	Select Parameterization:	Dosage Forms:	Model F ?	Model 1 Residual Error:	
	📀 One	⊙ clvv	💿 IV Bolus	🔵 Yes - Normal 🔵 Yes - Log Normal	Proportional	
	○ Two	O Microconstants	 IV Infusion EV (Oral, IM, etc.) Bolus & Infusion (IV) Bolus & EV 	Model Lag ?	User-Defined	
	◯ Three	Macroconstants Parallel Non-Linear Elimination:		O Yes Special Constraints:	Fixed PK Sigma Estimation with Pandom No 's:	
	🚫 Dose-Response Model	💿 No (default)		○ K10 = K01	No (default) Yes	
	model101pk 👻	() Yes	O Bolus, Infusion & EV	K31 > K21	Non-Random Sigma est. (or fixed sigma):	
	PK Model Name:	model1pkcl			0.1	
Param Parame V CL	neter Input: eter Estimate 100.0 5	Lower Bound Upper Bound 0 3000000 0 3000000	Equality Number Ra	indom(0),Fixed(1)	Inter-Occasion • Yes • No	
				Nu Nu	Imber of Occasions	
				Covaria	3 ate Column for Occasion 1	
Covar	iance Matrix:		Inter-Occasion	n Covariance Matrix:		
Parame	eter V	CL	Parameter	V	CL	
V	1.0	0	V	1.0	0	
CL	U	1.0		0	1.0	
	Advanced Option	ns	Save File		Exit	
Seeie Ontion)e					

Output: Population means and Between Subject Variability

inter-occasion_m	ufpada.res - Notepad					
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew	/ <u>H</u> elp					
0 0 0 0 1 0 0 0 0						^
	==== MC-PEM RESULTS SECTION ==					
====== PARAMETER	S, VARIANCES, AND OBJ. FCN. BY	ITERATION =======				
ITER 1 44 2 44 3 43 4 43 5 43 6 43 7 43 8 43 9 43 10 42	MEAN001 MEAN002 .681754242 42.176770549 .055070119 40.082318176 .475234104 37.661595571 .340531879 37.060952718 .083110915 37.180655728 .236773295 37.207832575 .058852298 38.122704101 .055875252 37.991920811 .069759626 38.237369332 .984952459 37.764980331	VARIANCE001 0.065821502 0.057872339 0.060058659 0.058234164 0.055973645 0.057701252 0.056911646 0.055001076 0.054669206 0.054677386	VARIANCE002 0.103909878 0.070609291 0.044566352 0.048745595 0.046821241 0.041550825 0.045765167 0.041563983 0.058342601 0.050934002	SIGMAPK 0.152505303 0.091788388 0.065431578 0.057294254 0.055003324 0.054812380 0.052982505 0.053819384 0.053364996 0.052769142	OBJ -109.825599670 -153.547271729 -188.758422852 -205.656326294 -209.546844482 -211.469573975 -210.712768555 -210.031143188 -211.003448486 -210.662338257	=
<pre>ITER VARIANCE_COV</pre>	ANCE-COVARIANCE MATRIX BY ITER. ARIANCE_AT_EACH_ITERATION 01 -0.2980936E-01 01 0.1039099E+00 01 -0.1946896E-01 01 0.7060929E-01 01 0.6491060E-02 02 0.4456635E-01 01 0.1597992E-01	ATION ======				
4 0.1597992E-	01 0.4874560E-01					~
<						>
				Ln 1	1, Col 1	

Output: Inter-occasion variability

📕 vare	covar_iter_inter_occa	asionad1tr2b_set_1_10_patients_mufpada.csv.txt - Notepad	
<u>F</u> ile <u>E</u> d	it F <u>o</u> rmat <u>V</u> iew <u>H</u> elp		
ITER,	BOV_VARIANCE_COVAR	IANCE_AT_EACH_ITERATION	~
1,	0.000000,	0.000000	
1,	0.000000	0.162078,	
2,	0.000000,	0.000000,	
2,	0.000000,	0.071706,	
3,	0.000000,	0.000000,	
3,	0.000000,	0.031653,	
4,	0.000000,	0.000000,	
4,	0.000000,	0.020152,	
5,	0.000000,	0.000000,	_
5,	0.000000,	0.015734,	
6,	0.000000,	0.000000,	
6,	0.000000,	0.017464	
7	0.000000,	0.000000	
7	0.000000,	0.017935,	
8,	0.000000,	0.000000	
8,	0.000000	0.015994	
9,	0.000000,	0.000000	
9,	0.000000	0.016349	
10,	0.000000,	0.000000	_
10,	0.000000	0.015968	*
1			N
		Ln 9, Co	ol 46

Example 1: Diagnostic Plot

MC-PEM Mixture algorithm

Probability to observe individual I data = Probability that any individual is coming from distribution 1 (p₁) x Probability to observe data from individual I, given the individual is coming from distribution 1 (EXP(LOG-LIKELIHOOD)=pi,1)

+ Probability that any individual is coming from distribution 2 (1-p₁) x Probability to observe data from individual I, given the individual is coming from distribution 2 (EXP(LOG-LIKELIHOOD)=pi,2)

Contribution from distribution 1 Contribution from distribution 2 $\sim p_1 \times p_1 + (1-p_1) \times p$

CG0820 17

MC-PEM Mixture algorithm

Contribution from distribution 1 in percent

<u>**p x pi,1**</u> = weight_{i,1} **p x pi,1 + (1-p) x pi,2**

Contribution from distribution 2 in percent $\frac{(1-p) \times pi,2}{p \times pi,1 + (1-p) \times pi,2} = weight_{i,2}$

The algorithm

Update of p for each distribution At the first iteration must enter initial estimate for p_k

From iteration 2:
$$p_k = \frac{1}{n} \sum_{i=1}^n weight_{i,k}$$

Update of population mean and variances For each distribution

$$\mu_{new,k} = \frac{\sum_{i=1}^{m} weight_{i,k} \overline{\theta}_{Gi,k}}{\sum_{i=1}^{m} weight_{i,k}}}$$

$$\Omega_{new,k} = \frac{\sum_{i=1}^{m} weight_{i,k} (\overline{\theta}_{Gi,k} - \mu_{new,k}) (\overline{\theta}_{Gi,k} - \mu_{new,k})}{\sum_{i=1}^{m} weight_{i,k}} \overline{B}_{Gi,k}}$$

CG0820 19

Example 2: One compartment model with mixture of two Populations in Cl

Mixture of two populations

CG0820 20

Example 2: PDx-MC-PEM mixture control stream part

Example 2: Output Summary

SUMMARY_MIXTUREmixture_50_50.csv.TXT - Notepad	
<u>Fi</u> le <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp	
KDIS VAR_COVAR_LAST_ITERATION 1 0.203187672 -0.043010452 1 -0.043010452 0.120968181 2 0.204930368 -0.067073346 2 -0.067073346 0.145161442 KDIS PAR_MUMBER POP_MEAN 1 1 46.522057173 1 2 48.824681327 2 1 46.535526780 2 2 4.792882269 KDIS PROPORTION PATIENTS 1 0.499979883 2 0.500020117	
	Ln 1, Coi 1

Example 2: Probability for each individual to belong to anyone distribution

TETA_MIXTUREmixture_5	50_50.csv			.TXT - Notepad	_ @ <mark>X</mark>
<u>File E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp					
ID D	IS WEIGHT	TETA001	TETA002		^
1	1 0.00000000	61.593265596	13.333161886		
2	1 0.00000000	65.343591213	12.807206990		
3	1 0.00000000	91.832005466	10.348463007		
4	1 0.00000000	42.771041895	12.591721445		
5	1 0.00000000	95.170749894	13.752781474		
6	1 0.00000000	60.411247726	12,968048909		
7	1 0.00000000	86,162531068	11,177864323		
8	1 0 00000000	56 794185705	11 077320673		
ă	1 0.00000000	79 488681710	13 532222461		
10	1 0.00000000	71 592879229	8 453300939		
11	1 1 00000000	57 673024036	43 646851675		
12	1 1.00000000	75 017746440	42 001727212		
13	1 1.00000000	34 012063776	38 880066554		
14	1 1.00000000	30 721007882	20 E27070100		
15	1 1.000000000	42 620111810	09.32/9/0100		=
16	1 1 00000000	42.020111010			
10	1 1.00000000	52.124594599	67.145591527		
10	1 1.00000000	99.112095556	54.55//55555		
18	1 1.00000000	29.742306562	67.745422517		
19	1 1.00000000	30.332854904	46.376581130		
20	1 1.00000000	85.840039748	42.988102253		
1	2 1.00000000	57.865353492	4.920918158		
2	2 1.00000000	75.104255390	3.962006498		
3	2 1.00000000	33.926256200	3.786922100		
4	2 1.00000000	30.936124586	9.283304779		
5	2 1.00000000	42.066035037	2.527312256		
6	2 1.00000000	32.107235246	6.734614279		
7	2 1.00000000	100.170143422	5.420063786		
8	2 1.00000000	29.871104067	6.891293139		
9	2 1.00000000	30.154277009	4.696967468		
10	2 1.00000000	85.686356080	3.123551740		
11	2 0.00000000	19.665012988	17.035026333		
12	2 0.00000000	24.755142639	17.009803009		
13	2 0.00000000	16.353991224	20.012373660		
14	2 0.00000000	9.256873475	22.911724786		
					*
<					>

Example 2: Diagnostic Plot

