
CG0820  1

The Monte-Carlo Parametric 
Expectation Maximization 

Algorithm 

Serge Guzy, PhD

President POP-PHARM; Inc

Department of Pharmacokinetics, XOMA



CG0820  2

MC-PEM METHODOLOGY (Prior 
Sampling)
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�Sample from the prior 

distribution and evaluate the 

weighted individual 

likelihood  at each sample k

�Compute the individual 

weighted mean

�Compute the individual 

variance covariance matrix
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MC-PEM METHODOLOGY (Direct Sampling)
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MC-PEM METHODOLOGY (Prior Sampling)

u Repeat all the previous steps with the new 

population means, variances, covariances and V�
�new prior��until no change is reported in the prior

u The objective function will be optimal once no 
change is detected in each of the estimated 

parameters
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Inter-Occasion Variability in MC-PEM

Observed individual profile: Two Equal Doses and no  inter-occasion 

variability
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Typical Individual Profile without inter-occasion variability
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Inter-Occasion Variability in MC-PEM

O bserved  ind ividua l p ro file : Tw o  E qua l D o ses  and   In ter-o ccas ion  

variab ility
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Inter-Occasion Variability in MC-PEM
Observed data compared to Predicted Concentration (with and 

without inter-occasion) 
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Inter-Occasion Variability in MC-PEM

The Algorithm

1. Start with first individual, i

2. Sample one set of parameters (k=1) from the prior 

distribution (One value of V and CL)

3. Sample one set of parameters for each occasion with 

mean V,CL and initial variance-covariance matrix 

you selected for Inter-occasion variability, :IOV

4. Compute the normalized likelihood (zk(i))

5. k=k+1 and repeat steps 2-4 until the last sample 

(k=ri)

6. i=i+1 and repeat Steps 1-5 until the last individual 

(i=n)

7. Update Population Mean, Between Subject and 

Inter-Occasion variability as follows
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Inter-Occasion Variability in MC-PEM
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Inter-Occasion Variability in MC-PEM

Update of the Inter-occasion variability
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Example 1

u 1 compartment model

• IV Bolus

• V and CL are the population parameters

• Inter-occasion on CL
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Example 1: data set
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Example 1: PDx-MC-PEM Wizard
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Output: Population means and Between 
Subject Variability
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Output: Inter-occasion variability
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Example 1: Diagnostic Plot
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MC-PEM Mixture algorithm

Probability to observe individual I data = 

Probability that any individual is coming from 
distribution 1 (p1) x Probability to observe data 

from individual I, given the individual is coming 

from distribution 1 (EXP(LOG-LIKELIHOOD)=pi,1)

+ Probability that any individual is coming from 
distribution 2 (1-p1) x Probability to observe data 
from individual I, given the individual is coming 

from distribution 2 (EXP(LOG-LIKELIHOOD)=pi,2)

~ p1 x pi,1 + (1-p1) x pi,2

Contribution from distribution 1   Contribution from distribution 2 
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MC-PEM Mixture algorithm

Contribution from distribution 

1 in percent

p x pi,1 

p x pi,1 + (1-p) x pi,2

Contribution from distribution 2 in percent

(1-p) x pi,2

p x pi,1 + (1-p) x pi,2

= weight i ,1

= weight
i , 2
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The algorithm
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Update of p for each distribution

At the first iteration must enter initial estimate for pk

Update of population mean and variances

For each distribution
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Example 2: One compartment model with 
mixture of two Populations in Cl

Mixture of two populations
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Example 2: PDx-MC-PEM mixture control 
stream part
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Example 2: Output Summary
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Example 2: Probability for each individual 
to belong to anyone distribution
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Example 2: Diagnostic Plot


